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SUMMARY

In a matter of years, single-cell omics has matured from a pioneering technique employed by just a handful of 
specialized laboratories to become a ubiquitous feature of biological research and a key driver of scientific 
discovery. The widespread adoption and development of single-cell omic assays has sparked mounting 
enthusiasm that these technologies are poised to also enhance the precision of diagnosis, the monitoring 
of disease progression, and the personalization of therapeutic strategies. Despite initial forays into clinical 
settings, however, single-cell technologies are not yet routinely used to inform medical or surgical deci- 
sion-making. Here, we identify and categorize key experimental, computational, and conceptual barriers 
that currently hinder the clinical deployment of single-cell omics. We focus on the potential for single-cell 
transcriptomics to guide clinical decision-making through the development of combinatorial biomarkers 
that simultaneously quantify multiple cell-type-specific pathophysiological processes. We articulate a frame- 
work to identify patient subpopulations that stand to benefit from such biomarkers, and we outline the exper- 
imental and computational requirements to derive reproducible and actionable clinical readouts from single- 
cell omics.

INTRODUCTION

The parcellation of human pathology into taxonomies of dis- 

eases and their subtypes has been a central aim of medicine 

for millennia. These taxonomies initially grew out of attempts 

to organize clinical observations and were gradually refined 

as new technologies for physiological, biochemical, and radio- 

logical measurement were developed and then implemented in 

clinical practice. 1 Over the past century, the taxonomy of hu- 

man disease has been refined based on increasingly precise 

molecular measurements. 2 The application of genomics, tran- 

scriptomics, proteomics, metabolomics, and lipidomics to hu- 

man tissues has produced detailed molecular portraits of 

many diseases. Refinements to these assays that allowed 

them to achieve single-cell resolution, and the advent of sin- 

gle-cell omics as a ubiquitous feature of biomedical research, 

are further deepening our ability to measure human pathophys- 

iology by capturing the full spectrum of molecular and cellular 

dysregulation that occurs in disease (see Table 1 for glossary 

of terms).

Since the sequencing of the first single-cell transcriptome in 

2009, 3 single-cell omics has scaled to entire organisms 4–10 and 

has become a ubiquitous feature of biomedical research. The 

ability to measure the cellular and molecular alterations induced 

by disease and biological perturbations has enabled profound

discoveries across many fields of science. In neuroscience, sin- 

gle-cell omics has identified subpopulations of neurons that 

control torpor, regulate thirst, or can restore walking after paral- 

ysis. 11–13 In cancer biology, single-cell omics has revealed that 

the transcriptional programs of malignant cells in glioblastoma 

converge on four cardinal cellular states, each associated with 

distinct genetic drivers. 14 In regeneration, single-cell omics has 

uncovered recovery-organizing cells that orchestrate the re- 

growth of injured limbs, organs, and damaged nervous 

systems. 15–19

The impact of single-cell omics on scientific discovery stands 

in marked contrast with its impact on clinical practice, which has 

to date been minimal. Why have the impressive increases in the 

resolution of molecular and cellular measurements attendant on 

the maturation of single-cell omics not translated into improved 

diagnosis, prognosis, or management of human disease? We 

argue that this limited clinical impact is due to multifaceted 

experimental, computational, and conceptual barriers that 

remain to be overcome for single-cell omics to be translated 

into clinical and surgical environments. We focus our discussion 

on single-cell transcriptomics as the most technically, conceptu- 

ally, and commercially mature single-cell omic assay and 

therefore the most primed for clinical translation. However, the 

experimental, computational, and conceptual barriers that we 

outline extend to other single-cell omic approaches, such as
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Table. 1. Glossary of terms

Term Definition

Single-cell omics a family of technologies that measure thousands of analytes (for instance, transcripts, proteins, or 

metabolites) simultaneously within individual cells, allowing the detection of disease-associated 

molecular changes at the resolution of individual cells or cell types

Bulk omics in contrast to single-cell omics, technologies that measure the average abundance of analytes 

across all the cells in a biological sample, which can mask molecular alterations within specific cell 

types or conflate changes in cell-type abundance with cell-type-intrinsic alterations

Single-cell transcriptomics a single-cell omic assay that involves measuring the expression of thousands of genes within 

individual cells by RNA sequencing

Single-nucleus transcriptomics a variation of single-cell transcriptomics that sequences RNA from isolated nuclei instead of whole 

cells, enabling analysis of frozen or difficult-to-dissociate tissues

Molecular biomarkers biomolecules present in human tissues or biofluids that reflect physiological or pathophysiological 

processes and can be used to diagnose disease, stage disease severity, prognosticate disease 

outcomes, or guide treatment

Coordinated multicellular biomarkers diagnostic or prognostic tools that integrate measurements made within multiple cell types 

simultaneously

Library preparation in sequencing assays, the process of converting the DNA or RNA present in a biological sample into 

a format compatible with the chosen sequencing technology

Gene signature a coordinated group of genes implicated in the same physiological or pathophysiological process, 

whose expression is often summarized with a single statistic (e.g., the mean expression of all genes 

in the signature)

Multimodal single-cell omics the simultaneous measurement of multiple molecular features—such gene expression and surface 

protein abundance—within the same cell

Standard operating procedures (SOPs) reproducible protocols for experimental and computational workflows, often in the form of step-by- 

step instructions, which codify routine laboratory operations

Clustering a form of unsupervised machine learning in which a set of objects is grouped in such a way that 

objects in the same group are more similar to one another than to those in other groups; a 

fundamental operation in the analysis of single-cell omics data, which is used to identify cells of the 

same type or state

Differential expression a form of statistical analysis that enables the identification of genes whose expression 

demonstrates significant differences between groups of cells; a fundamental operation in the 

analysis of single-cell transcriptomics data, which enables the identification of cell types and 

disease-associated molecular programs

Pseudotime analysis a computational method that orders cells along a trajectory in order to assign each cell a position 

along a continuous biological process, such as cell differentiation or disease progression

Hierarchical data a structure in which data are nested—e.g., cells within the same cell type or originating from the 

same patient—and which may require statistical methods that account for non-independence 

between observations

Count splitting a computational approach in which a matrix of gene expression values derived from RNA 

sequencing is partitioned into two gene expression matrices based on an underlying distributional 

assumption, enabling cell-type identification (via clustering) to be performed on a different subset 

of the data from that used to identify marker genes of each cell type (via differential expression)

Double dipping a statistical error where the same dataset is used for both hypothesis generation and testing, 

leading to overfitting and spurious findings

Pseudobulk analysis an approach that aggregates data from individual cells, often of the same inferred cell type, to 

produce a single gene expression profile for each biological replicate, and which has been 

repeatedly demonstrated to reduce false discoveries

Differential abundance A form of statistical analysis that seeks to identify cell types or states whose relative abundances 

change significantly between two conditions (for instance, health versus disease)

Validation cohort a group of patients independent from those used to identify a biomarker, in which the diagnostic or 

prognostic performance of that biomarker can be evaluated

Phenotype prediction in the context of this perspective, the use of statistical or machine learning methods to infer clinical 

features such as disease status or treatment response based on single-cell omics data

(Continued on next page)
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single-cell measurements of chromatin accessibility or protein 

abundance.

BIOMARKERS: THE ENTRY POINT INTO CLINICAL 

MEDICINE

Historically, advances in measurement technologies have gener- 

ally had their most immediate impact on clinical care by 

advancing the diagnosis of human disease. These diagnostic ad- 

vances have often taken the form of new molecular bio- 

markers. 20 The development of conventional ‘‘bulk’’ omic tech- 

niques that measure the average abundance of analytes over 

all of the cells within a biological sample led to numerous discov- 

eries in preclinical models that have now been directly integrated 

into patient care through the clinical implementation of new bio- 

markers. For instance, sequencing technologies are now 

routinely used in the clinic to identify relevant cancer mutations, 

direct targeted therapy, or diagnose genetic diseases. 21–26 

The increased resolution afforded by single-cell transcrip- 

tomics has sparked enthusiasm that this technology could 

further enhance the precision of diagnoses, monitoring of dis- 

ease progression, and accuracy of personalized medicine. 27,28 

Because bulk transcriptomic profiling of biological tissues con- 

flates changes in cell-type proportions with cell-type-intrinsic 

alterations in gene expression, these measurements can over- 

look important aspects of disease physiology or even lead to 

false discoveries. 29,30 A canonical example is in neurodegener-

ative diseases, where the apparent downregulation of genes 

associated with synaptic function actually reflects loss of 

neurons and the attendant increase in glial cell fraction. 30 

Bulk transcriptomic profiling can also overlook cell-type-spe- 

cific transcriptional changes, particularly in cell types that are 

comparatively rare in the tissue of interest; for instance, micro- 

glia differentially express hundreds of genes in response to 

neuroinflammatory stimuli, which cannot be detected by bulk 

transcriptomic analysis of whole-brain tissue. 30 By decoupling 

these axes of biological variability, single-cell transcriptomics 

has the potential to expose clinically meaningful alterations 

within specific cellular subpopulations that may provide more 

precise and accurate biomarkers of disease. Studies of the 

central nervous system, for instance, have decoupled shifts in 

cell-type proportions from cell-type-specific differential expres- 

sion by revealing neuronal subtype-specific responses to spinal 

cord injury (SCI) 31 or by identifying subpopulations of neurons 

that are uniquely resilient or susceptible to injury or 

disease. 32,33

The clinical impact of biomarkers derived from single-cell tran- 

scriptomics could be more pervasive than is currently appreci- 

ated (Figure 1). Consider, for example, the potential clinical 

application of single-cell transcriptomics in the context of trau- 

matic SCI. This is a disease for which the clinical diagnosis is 

rarely difficult and for which effective pharmacotherapies do 

not exist. Nonetheless, cell-type-specific biomarkers could 

guide the clinical implementation of promising therapeutic

Table. Continued

Term Definition

Cell quality control, doublet removal, 

ambient RNA removal, data integration, 

and cell-type annotation

a series of steps that have become established as routine steps in the preprocessing of single-cell 

transcriptomics data, before any biological inferences are drawn; specifically:

• cell quality control: removal of low-quality single-cell transcriptomes

• doublet removal: removal of single-cell transcriptomes that actually arise from mixtures of two 

cells sequenced together

• ambient RNA removal: removal of artifactual gene expression associated with cell lysis

• data integration: analysis of single-cell omics data acquired at different times, in different 

batches, or in different laboratories in a manner that removes or mitigates technical differ- 

ences associated with the time, batch, or laboratory of origin

• cell-type annotation: computational assignment of cell types (e.g., T cell, fibroblast) to each 

single-cell transcriptome

Clinically actionable readout a measurement that alters the standard of care; for instance, identifying a new biological pathway 

active in the innate immune response to bacteria from clinical data is not itself a clinically actionable 

readout, but identifying bacterial resistance to a given antibiotic in a patient with pneumonia is 

clinically actionable

Multiple instance learning a machine learning paradigm in which a model receives a set of data points (for instance, individual 

cells) that all share the same label (for instance, disease versus control), rather than being labeled 

individually, and is tasked with making a single prediction for all data points

Attention an architectural component of many modern deep neural networks, which allows these models to 

determine the relative importance of each item in a set (for instance, an individual cell), relative to 

the other items in that set, when making a prediction

Benchmarking the process of comparing different computational or experimental workflows on the basis of a 

common set of objective metrics

Single-cell assay for transposase- 

accessible chromatin (ATAC-seq)

a single-cell omics method that enables measurement of chromatin accessibility across the 

genome within individual cells

Spatial omics techniques that measure many analytes at once within cells in their native tissue context, 

maintaining the spatial relationships between cells that occur within a healthy or diseased tissue
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approaches that are emerging in preclinical models. In SCI, the 

initial traumatic insult to the spinal cord is not necessarily the pri- 

mary determinant of neurological outcome. This insult also initi- 

ates a complex and progressive cascade of biochemical pro- 

cesses, collectively termed the ‘‘secondary injury, 34 ’’ involving 

all the major cell types and subtypes of the central nervous sys- 

tem. 35–38 Historically, therapeutic approaches to SCI have 

generally sought to target aspects of the secondary injury 

response within individual cell types—for instance, by inhibiting 

immune responses or promoting neuronal sprouting. 39,40 How- 

ever, despite decades of research, these approaches have failed 

to translate into effective therapies. 41–43 More recently, coordi- 

nated targeting of multiple cell-type-specific responses, 

including astrocyte, neuronal, vascular, and immune cell-spe- 

cific programs, has produced more promising therapies that 

can reverse paralysis in preclinical models. 44,45 Clinical transla- 

tion of these therapies requires that these multicellular re- 

sponses are similarly modulated and targetable in human pa- 

tients. Yet, if the responses of each cell type to each individual 

component of these multipronged strategies cannot be 

measured, it could remain permanently unclear which aspects 

of these treatments have succeeded or failed. It is reasonable 

to expect, then, that translating multipronged therapies that 

target multiple cell-type-specific responses in tandem may 

require multicellular biomarkers to determine the profile of pa- 

tients who stand to benefit from these therapies.

The example of SCI illustrates the potential clinical impact 

of biomarkers that monitor coordinated but cell-type-specific 

molecular programs, even in diseases for which there is little 

diagnostic uncertainty. The potential benefit of biomarkers 

based on single-cell transcriptomics could be considerably 

larger in diseases for which diagnosis is challenging, or 

when clinically meaningful subtypes exist; where accurate 

prognostication requires the integration of multiple cell-type- 

specific responses; or where more precise diagnosis or prog- 

nosis would alter the nature or timing of therapy—points to 

which we return below. Conversely, many clinical contexts 

are unlikely to benefit from the deployment of single-cell 

omics, either because diagnosis or management is relatively 

unambiguous or because clinically actionable information 

can be obtained without measuring many analytes across 

multiple cell types, and we outline a framework to prioritize 

settings that justify the additional cost and complexity of sin- 

gle-cell omic analysis.

BARRIERS TO CLINICAL TRANSLATION

At present, however, this potential benefit is entirely theoretical. 

Why has single-cell transcriptomics failed to impact clinical 

practice thus far, and what factors have prevented its integration 

into clinical decision-making? Here, we distinguish three cate- 

gories of barriers that currently hinder single-cell technologies

from realizing their transformative potential in clinical practice: 

experimental barriers, computational barriers, and conceptual 

barriers (Figure 2).

Experimental barriers

Arguably the most significant barrier to the identification and 

translation of biomarkers based on single-cell transcriptomics 

is the relatively high cost and limited scalability of existing sin- 

gle-cell assays. Clinical discoveries that emerged from bulk 

omics were enabled by studies that profiled large cohorts of pa- 

tients, often comprising hundreds of individuals. In contrast, 

only a handful of studies have profiled cohorts of comparable 

size with single-cell transcriptomics. 46–49 Even cohorts 

comprising dozens of patients have been uncommon.

Human diseases are inherently heterogeneous. Cellular and 

molecular manifestations of disease vary according to the age, 

sex, genetic background, exposure history, disease severity, 

time since onset, and medication history of each individual pa- 

tient. Consequently, it is unlikely that cohorts comprising only a 

handful of patients will support the discovery of robust and 

generalizable biomarkers. Instead, assembling large patient co- 

horts that capture the full spectrum of disease manifestations will 

be necessary to identify disease-associated molecular pro- 

grams that transcend patient-specific biological heterogeneity 

and inevitable technical variability.

On the other hand, assembling large patient cohorts alone 

cannot overcome arbitrary variability introduced at the level of 

the study design. For example, atlases that span multiple pri- 

mary cancer types in a single study are instrumental for biolog- 

ical discovery, but they will not support the identification of reli- 

able biomarkers within specific patient populations, such as a 

group of patients undergoing an identical course of therapy for 

a single type of cancer. Studies that seek to identify robust mo- 

lecular and cellular biomarkers will require a more thoughtful 

approach to cohort ascertainment in order to mitigate biological 

variability that is irrelevant to the clinical deployment of these 

biomarkers.

Until recently, efforts to profile large cohorts of patients with 

single-cell transcriptomics have been hindered by the cost of 

these measurements and the time-intensive nature of library 

preparation, combined with the difficulty of procuring fresh bio- 

logical tissues. Advances in the scalability of single-cell technol- 

ogies (for instance, probe-based multiplexing or well-based 

combinatorial indexing) are poised to increase the number of 

samples that can be profiled in a single experiment. 5,50,51 More- 

over, technological advances in the recovery of RNA transcripts 

from formalin-fixed or frozen tissues may open new opportu- 

nities to leverage existing hospital tissue banks for biomarker 

discovery. 52 Combining these advances with judicious patient 

ascertainment could accelerate the pace at which reliable bio- 

markers linked to cell-type-specific molecular alterations are 

discovered and then translated into clinical practice.

Figure 1. Transformative possibilities for actionable clinical biomarkers derived from single-cell omics

Illustrative examples of clinical applications for biomarkers derived from single-cell omics.

(A) A coordinated multicellular biomarker to stratify patients with spinal cord injury (SCI) based on continuous cell-level distributions of neuronal and microglial 
gene expression programs.

(B) A cellular biomarker for glioma based on the presence of rare cell populations and concomitant dysregulation of the blood-brain barrier (BBB).
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Despite these advances, technical challenges remain. For 

instance, investigators wishing to profile transcriptomes at sin- 

gle-cell resolution must choose between sequencing RNA from 

whole, intact cells (single-cell transcriptomics per se) or 

sequencing only nuclear RNA from isolated nuclei (single-nu- 

cleus transcriptomics). The latter has the advantage that it 

enables profiling of tissues that are difficult to dissociate me- 

chanically or enzymatically, and it mitigates transcriptional dys- 

regulation associated with the dissociation procedure itself. 

Yet, it is becoming clear that single-cell and single-nucleus tran- 

scriptomics both fail to recover certain cell types or gene signa- 

tures, raising the possibility that relevant biomarkers may be 

overlooked by either methodology. 53,54 Moreover, it is possible 

that accurate diagnosis or prognosis of certain diseases may 

require information that is not captured in the transcriptome 

but that may manifest exclusively in the epigenome, proteome, 

or metabolome. Despite advances in multimodal single-cell 

profiling, 55 the cost and complexity of these technologies gener- 

ally restrict investigators to the selection of a single modality for 

analysis, particularly when studying larger cohorts of patients. 

An additional experimental challenge for the clinical translation 

of single-cell transcriptomics relates to the regulatory environ- 

ment under which these biomarkers will be approved for clinical 

deployment. Current standards require that the results obtained 

from any given clinical sample can be independently reproduced 

by other laboratories provided with the same sample. 56 

Achieving this level of reproducibility will require major invest- 

ments of time and resources to standardize the preparation of 

tissues, the single-cell profiling of these tissues, and computa- 

tional analyses of the resulting sequencing data. This standard- 

ization will need to account for the heterogeneity of hospital en- 

vironments and will require the training of skilled personnel 

across hospitals and jurisdictions to perform and interpret iden- 

tical assays according to standard operating procedures (SOPs). 

The cost and complexity of this standardization will likely foster 

new industrial partnerships that will be necessary to achieve 

the marriage of biomedical expertise with the biotechnological 

foundation required to develop and implement single-cell 

assays.

Computational barriers

Beyond experimental barriers, there are also important compu- 

tational barriers that will need to be overcome in order to realize 

the potential clinical impact of single-cell transcriptomics. These 

challenges can be divided broadly into barriers to the discovery 

of candidate biomarkers and barriers to their clinical implemen- 

tation.

In the early stages of single-cell transcriptomics, both experi- 

mental methodologies and computational pipelines advanced 

rapidly and in tandem. During this formative period, computa- 

tional biologists drew heavily on methods originally developed

Figure 2. Experimental, computational, and conceptual barriers to 

the implementation of coordinated multicellular biomarkers based 

on single-cell transcriptomics

Top, recruitment of large patient cohorts as a central experimental barrier. 
Bottom left, valid statistical analysis as a central computational barrier. Bottom 
right, design of machine learning models for patient-level phenotype predic- 
tion from single-cell profiles as a central conceptual barrier.
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in the context of bulk transcriptomics. 57–59 Later developments 

identified purportedly distinct statistical properties of single- 

cell transcriptomics data, and methods tailored to these proper- 

ties were introduced. 60–63 Many of these assumptions and 

computational approaches became entrenched in standard 

workflows. 64 Over time, it has become evident that many of 

these workflows rely on flawed methodological or statistical as- 

sumptions. 65–68

The widespread use of inappropriate statistical methodologies 

to interrogate transcriptomic data presents a major barrier to the 

discovery of robust and generalizable biomarkers, because of 

the tendency for these methodologies to produce false discov- 

eries. For instance, clustering a single-cell dataset to identify 

cell types and then using the same data to identify genes differ- 

entially expressed between cell types represents a form of statis- 

tical ‘‘double dipping’’ that produces false discoveries, even in 

the absence of any underlying structure. 69,70 The same funda- 

mental issue recurs in other widespread computational para- 

digms, such as pseudotime analysis. The emergence of false 

discoveries is further compounded by the ubiquitous use of sta- 

tistical methods that inappropriately treat individual cells as the 

experimental unit of observation. 68,71 In reality, single-cell data 

have a hierarchical structure, such that cells from the same pa- 

tient cannot be treated as statistically independent. Failing to ac- 

count for biological variation between samples conflates varia- 

tion within and between replicates and can produce thousands 

of false discoveries in the absence of meaningful differences. 68 

A third challenge arises from the desire to identify cell types or 

states that vary in abundance as a function of disease. Because 

single-cell transcriptomics measures the relative proportions of 

cell types and states rather than their absolute abundances, an 

increase in the abundance of one cell type can produce the false 

impression that the abundances of all other cell types have 

decreased. 72

Efforts to clinically validate and translate biomarkers identified 

by statistical methods that are prone to producing false discov- 

eries are unlikely to be successful. Fortunately, alternatives are 

available. Count splitting separates latent variable estimation 

from statistical inference to enable valid differential expression 

after clustering or pseudotime analysis. 69 Generalized linear 

mixed models or ‘‘pseudobulk’’ differential expression ap- 

proaches account for variation between biological replicates 

and thereby avoid false discoveries. 68,71,73,74 Numerous 

methods enable valid differential abundance analysis by ac- 

counting for the compositional nature of single-cell datasets. 72,75 

However, adoption of these methods has been variable and 

incomplete. 68 Replacing inappropriate methodologies with sta- 

tistically valid methods in standard analysis workflows is an 

important first step in making generalizable discoveries from sin- 

gle-cell data that can translate into clinical advances.

The application of single-cell transcriptomics to human tissues 

in clinical and surgical environments also introduces new 

computational challenges. The promise of biomarkers based 

on single-cell transcriptomics is to integrate multiple coordi- 

nated and cell-type-specific alterations into a single diagnostic 

or prognostic readout. Statistical or machine learning models 

provide a natural framework to realize this promise (albeit by 

no means the only one). In this framework, a model trained on

single-cell transcriptomics data from one cohort of patients is 

then tasked with predicting phenotypes in new cohorts: for 

instance, to diagnose disease, stratify disease severity, or 

monitor therapy response. 76 This scenario, however, presents 

formidable computational challenges that have been addressed 

to only a limited extent. Even though a handful of models have 

been developed to predict phenotypes in unseen patients, they 

have taken contrasting methodological approaches; and 

because these efforts are still in their early stages, none of these 

methods has yet been tested in an independent validation 

cohort. 76–79 Consequently, there are numerous open questions 

about how the challenge of phenotype prediction from single- 

cell transcriptomics data might be most productively addressed 

by machine learning. Initial attempts have already exposed the 

central importance of accounting for both technical batch effects 

and biological heterogeneity in a principled manner. Other open 

questions related to the optimal representation of the input data 

and nature of the prediction task are more conceptual in nature, 

and they are therefore discussed further below.

Beyond phenotype prediction, the need to establish reproduc- 

ible SOPs for the computational analysis of single-cell transcrip- 

tomics data will also introduce new computational challenges. At 

present, standard computational workflows for data analysis 

require a considerable degree of subjective manual intervention 

at essentially every stage after read alignment, including cell 

quality control, doublet removal, ambient RNA removal, data 

integration, and cell-type annotation. 80 The values of specific pa- 

rameters that are selected at each of these steps can markedly 

alter the final dataset. The degree of subjectivity that is inherent 

to the analysis of single-cell datasets is at odds with the regula- 

tory requirement that different laboratories produce identical 

clinical results for any given sample. Consequently, clinical 

deployment of single-cell transcriptomics will require the devel- 

opment of computational protocols that standardize and auto- 

mate these steps for each specific disease context. This stan- 

dardization is a daunting challenge that has not yet been 

successfully addressed. In order for single-cell omics to meet 

regulatory standards for clinical use, we argue that the develop- 

ment of reproducible, automated analysis workflows must be 

elevated to a central priority within the computational research 

community. Meeting this requirement may require a realignment 

of academic incentives, which currently favor the introduction of 

novel methods over the less glamorous work required to enable 

translation into clinical settings.

Conceptual barriers

Beyond the concrete experimental and computational barriers 

related to the implementation of single-cell transcriptomics in 

clinical settings, there are also broader unresolved conceptual 

issues that relate to realizing the clinical potential of these tech- 

nologies. For example, which patient populations stand to 

benefit from biomarkers based on single-cell transcriptomics? 

And, for these patients, how can the coordinated and cell- 

type-specific molecular alterations associated with each disease 

be integrated to produce clinically actionable readouts?

For many diseases, clinical care will not directly benefit from 

single-cell transcriptomics or single-cell omics more broadly. 

Diagnosis, for instance, is unlikely to be advanced by
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multicellular biomarkers when disease status can be unambigu- 

ously determined by simple laboratory or clinical investigations. 

Single-cell omics is not necessary to determine whether, for 

instance, a patient is hypertensive or presents with iron defi- 

ciency anemia. Similarly, for diseases with unambiguous indica- 

tions for surgical management, such as appendicitis or hydro- 

cephalus, single-cell omics is unlikely to have a meaningful 

impact at least on the initial stages of clinical decision-making. 

Which diseases, then, do stand to benefit from single-cell bio- 

markers? The diseases that stand to benefit the most are those 

whose pathophysiology involves coordinated molecular alter- 

ations across multiple cell types and for which assessing those 

multicellular alterations can meaningfully improve diagnosis, 

management, or prognosis. 81 Improvements in diagnosis are 

most relevant when they deliver actionable information that 

rapidly alters management and changes the patient’s prognosis. 

Improvements in management are most relevant when clinicians 

must consider a large number of possible therapeutic regimens 

or when the timing at which an intervention should be delivered is 

unclear.

Technical considerations also play a role. If clinically action- 

able information can be obtained without measuring many genes 

across multiple cell types, then clinical benefit may be more 

straightforwardly realized by simpler approaches that sort indi- 

vidual cellular subpopulations and quantify the abundance of in-

dividual transcripts or surface proteins—as is the standard of 

care, for instance, in many hematological malignancies. 82 More- 

over, if the tissues within which a disease manifests are not clin- 

ically accessible, and other accessible tissues like blood, urine, 

or cerebrospinal fluid (CSF) cannot capture the relevant cellular 

and molecular alterations, then the potential benefit of bio- 

markers based on single-cell transcriptomics will be consider- 

ably diminished.

A number of diseases meet all of the above criteria and may 

therefore benefit from biomarkers derived from single-cell tran- 

scriptomics (Box 1). Most solid tumors, for instance, will be bio- 

psied as part of standard practice, meaning that the diseased 

tissue is clinically accessible. Tumors are complex ecosystems 

that often comprise multiple malignant subclones as well as a 

microenvironment of stromal and immune cells, and each of 

these cellular compartments may influence disease progres- 

sion. 83 Consequently, there is a clear rationale to monitor multi- 

cellular alterations within tumors at the scale of the whole tran- 

scriptome. Decades of research have shown that histologically 

uniform tumors can be differentiated based on their molecular 

profiles, and some of these molecular subgroups have distinct 

prognoses and characteristic responses to specific therapeutic 

regimens. 84–86 A single-cell biomarker for glioma, for instance, 

could discern the glial cell state of origin, inform prognosis by 

identifying the presence of treatment-resistant subclones or

Box 1. Potential clinical applications of single-cell omics

Single-cell omics is now routinely being applied to profile human tissues, including in prospective clinical trials that seek to reveal new pathobio- 

logical mechanisms of human disease or nominate putative biomarkers of disease progression and responses to therapy. 99 Such studies, although 

exciting, fall short of implying a requirement for single-cell omics itself to be deployed in the clinic. Instead, biomarkers identified through such dis- 

covery efforts may be more straightforwardly measured with existing technologies that are well-established in diagnostic settings (for instance, 

immunochemical assays or flow cytometry).

We argue that there is a rationale for clinical deployment of single-cell omics only when clinical decision-making is contingent on the simultaneous 

measurement of many analytes across multiple cell types. For instance, clinical translation of therapies that target multiple cell-type-specific aspects 

of the response to SCI may require molecular biomarkers that can measure the corresponding cell-type-specific responses in order to identify pa- 

tients who stand to benefit from these therapies. In this section, we highlight additional clinical scenarios that could benefit from such coordinated 

multicellular biomarkers.

In neurosurgical oncology, tumors such as meningiomas and chordomas are noted for the complexity of their evolution and response to thera- 

pies. 100,101 Most are indolent and can be managed conservatively or with limited surgical resection. A subset, however, follow a far more aggressive 

course characterized by repeated recurrence and progressive neurological impairment. Recent single-cell studies have begun to identify transcrip- 

tional programs and immune or stromal subpopulations—such as reactive leptomeningeal cells and immunosuppressive macrophages—that are 

enriched in tumors with early or frequent recurrence. 101–103 These cellular and molecular features have not historically been appreciated by histo- 

pathology and therefore have not informed prognostication or management, but their monitoring by single-cell omics could stratify patients to more 

intensive surveillance regimens or inform the enrollment of high-risk patients in trials of novel adjuvant therapies.

Single-cell omics could also advance cancer diagnostics at earlier stages—for instance, through the molecular characterization of circulating tu- 

mor cells (CTCs). These rare cells, which detach from primary tumors and enter the bloodstream or lymphatic system, can be isolated from whole 

blood and profiled by single-cell omics. Genomic or trancriptomic profiles of isolated CTCs could enable the evaluation of multiple clinically relevant 

parameters simultaneously, for instance, by inferring cell proliferation rates, predicting cell type and tissue of origin, or identifying the recurrence of 

treatment-resistant subclones. These readouts in turn could stratify high-risk patients to more intensive surveillance regimens, direct medical im- 

aging to locate the primary tumor, enable diagnosis and staging of surgically inaccessible tumors, or guide therapeutic selection.

The broader potential for single-cell omics to guide personalized therapeutic selection based on patient-specific molecular alterations has already 

been recognized. 104 For instance, single-cell transcriptomics has informed personalized therapy for patients with refractory drug-induced hypersen- 

sitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DiHS/DRESS) and idiopathic multicentric Castleman’s disease. 27,105 In 

both cases, pathway enrichment analysis of single-cell transcriptomics data identified dysregulated signaling pathways that could be pharmaco- 

logically targeted with existing agents. The availability of large-scale resources cataloging transcriptional responses to pharmacological and genetic 

perturbations raises the possibility of matching patient-specific patterns of transcriptional dysregulation with compounds or knockouts that can 

elicit or reverse similar transcriptomic signatures. 106–108 In the setting of oncology, this approach could even be extended to individual subclones 

to enable the personalization of combination therapies. However, many unresolved questions remain about the regulatory frameworks that would be 

required for such computational approaches to advance from compassionate use to broader clinical adoption.
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glioblastoma stem cells, and guide clinicians through clinical 

considerations such as conservative versus aggressive surgical 

resection, the role of chemotherapy and radiotherapy in the 

management plan, and whether these interventions are likely 

to alter the patient’s prognosis. In a similar vein, diagnosis 

and treatment of autoimmune disease could be guided by the 

identification of specific inflammatory cell subpopulations in 

peripheral blood, particularly when each subpopulation re- 

sponds differently to targeted immunotherapies.

Once a disease has been prioritized as a rational target for 

biomarker development, and single-cell transcriptomics data 

have been collected from a large and carefully ascertained pa- 

tient cohort, the question next arises as to how to translate 

multifaceted single-cell data obtained from any given patient 

into a clinically meaningful readout. Existing computational par- 

adigms designed to produce diagnostic or prognostic readouts 

from bulk omics data are unlikely to translate directly into the 

setting of single-cell transcriptomics because of profound dif- 

ferences in the structure of the data. Instead, efforts to deploy 

coordinated multicellular biomarkers must carefully consider 

the conceptual framework by which data from tens of thou- 

sands of genes measured across thousands of cells, potentially 

grouped into dozens of cell types, will be translated into read- 

outs that clinicians have historically appreciated as scalar 

values. From a machine learning perspective, we might ask: 

what are the inputs to our model, and what is it trained to pre- 

dict as output?

Clinically meaningful readouts derived from single-cell bio- 

markers may take more forms that have been described in 

the literature to date. Among the handful of computational 

frameworks that have been developed thus far, all have 

assumed the need to predict a single patient-level output: for 

instance, a binary diagnostic classification of disease versus 

control. 76–79 However, it is equally possible that in some sce- 

narios, more actionable biomarkers may be derived from pre- 

dictions made at the level of individual cells. This might be 

the case when, for instance, the presence or proportion of a 

small number of cells with a particular molecular signature is 

of critical diagnostic or prognostic importance. The former 

case could be exemplified by the presence of a rare group of 

drug-resistant cancer cells that will ultimately lead to recur- 

rence. In the latter case, the proportion of astrocytes within a 

glioma that express a particular molecular signature might in- 

crease the resolution of tumor staging and therefore the accu- 

racy of prognostication.

Machine learning models that are designed to predict pheno- 

types for individual cells instead of producing patient-level out- 

puts will generate thousands of predictions per patient. In order 

for these predictions to inform clinical decision-making, they will 

need to be summarized into interpretable patient-level readouts. 

How might cell-level predictions be aggregated to the patient 

level? Cells from a single individual will demonstrate molecular 

responses to disease that are heterogeneous in both their nature 

and intensity. The distribution of these responses could be sum- 

marized in multiple ways: for instance, by a measure of central 

tendency reflecting the average molecular response to disease, 

or by the presence of extreme values, as in the case of rare drug- 

resistant cancer cells.

Regardless of whether a machine learning model produces 

patient- or cell-level predictions, the next question will be 

whether the biomarker must incorporate information from every 

cell type present in the tissue or only from the cell types that are 

most relevant to the disease in question. A related consideration 

is whether more accurate predictions can be achieved by 

training separate models for each cell type in turn or whether it 

is preferable to design a single model that can integrate informa- 

tion across multiple cell types. Integration of information across 

cell types in a single model can be achieved either through the 

representation of the input data or through the architecture of 

the model itself. For instance, representing a sample as a vector 

of cell-type or cell-state frequencies allows models to learn from 

multiple cell types in tandem, whereas neural network architec- 

tures based on attentive multiple instance learning can automat- 

ically prioritize cells and cell types most relevant to disease when 

making patient-level predictions. 78

The introduction of new computational methods to draw clin- 

ically actionable inferences from hierarchical single-cell data, 

along with careful benchmarking of these methods supported 

by statistical comparisons rather than point estimates of model 

performance, will guide the field toward the identification of 

optimal analytical approaches. However, the questions enumer- 

ated above will not have unique answers. Instead, the pathobi- 

ology of specific diseases and the clinical contexts in which a 

given biomarker is to be deployed will guide the design and im- 

plementation of biomarkers based on single-cell technologies. 

Close collaboration between computational scientists and clini- 

cians will be required to realize the full clinical potential of these 

technologies.

BUILDING ON EXISTING FOUNDATIONS

In the sections above, we have focused on the major barriers to 

the clinical translation of biomarkers based on single-cell tran- 

scriptomics. It is equally important to appreciate the impressive 

progress that has already been made and the existing compu- 

tational and experimental technologies that are poised to 

enable biomarker discovery. It is only by virtue of these ad- 

vances that the field is now in a position to begin contemplating 

the clinical deployment of single-cell technologies. Experi- 

mental approaches now unambiguously achieve the scale 

and throughput required to profile large, carefully designed pa- 

tient cohorts in prospective clinical trials, as evidenced by the 

handful of studies that have collected and analyzed single- 

cell datasets spanning hundreds of patients. 46–49 Computa- 

tional advances have scaled in parallel to enable the analysis 

of these large datasets using standard workflows, although 

many aspects of these workflows are still the subjects of 

debate. 87 We argue that despite ongoing efforts to refine 

important steps in single-cell data analysis workflows, such 

as normalization, clustering, or data integration, these tools 

are now sufficiently mature that their deployment in clinical 

and surgical environments will not compromise the clinical 

promise of single-cell transcriptomics. Each of the above steps 

has been extensively benchmarked, and these benchmarks 

have generally affirmed a high degree of similarity in perfor- 

mance between top-ranking methods. 88–91 Conversely, for
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other steps in the analysis workflow, such as differential 

expression and differential abundance analysis, benchmarks 

have identified clear differences in performance between 

methods and in some cases elucidated the mechanisms under- 

lying these differences. 68,71,74,75 Whereas further optimization 

of existing computational infrastructure is certainly valuable, 

this optimization may yield only incremental advances from a 

clinical perspective. Instead, we believe that overcoming the 

experimental, computational, and conceptual barriers outlined 

above must be the most urgent priority if the clinical potential 

of single-cell transcriptomics is to be realized.

BEYOND THE TRANSCRIPTOME

To this point, we have focused on single-cell transcriptomics, on 

the basis that the experimental and computational workflows for 

this modality are the most technically and commercially mature 

of any single-cell omic assay and are therefore the best posi- 

tioned for clinical translation. Although other single-cell omic as- 

says are now routinely being deployed in preclinical contexts or 

in basic studies of disease pathobiology in human tissues, 92 

additional obstacles must be overcome in order to realize 

their implementation in clinical settings. In single-cell assay for 

transposase-accessible chromatin sequencing (ATAC-seq), for 

instance, fundamental aspects of data analysis, such as whether 

chromatin accessibility should be considered a qualitative or 

quantitative measurement 93–95 or whether regions of accessible 

chromatin should be identified de novo from a given dataset or 

defined on the basis of an external reference, remain debated. 

Such debate does not preclude the translation of coordinated 

multicellular biomarkers based on chromatin accessibility pro- 

files, but it will hinder their clinical validation insofar as the risk 

of false positives or false negatives in biomarker discovery is 

increased.

On the other hand, there are also fundamental similarities in 

the nature and clinical utility of single-cell profiles obtained with 

single-cell transcriptomics and techniques such as single-cell 

chromatin accessibility, T or B cell receptor sequencing, prote- 

omics (either by mass spectrometry or with antibody-based 

sequencing workflows), or more nascent techniques such as 

lipidomics and metabolomics, as well as multi-omic combina- 

tions of these approaches that monitor multiple modalities in in- 

dividual cells. Development and translation of coordinated 

multicellular biomarkers based on any of these technologies 

will also require the profiling of large and carefully ascertained 

patient cohorts, the implementation of experimental and 

computational SOPs that can satisfy regulatory requirements, 

the use of valid statistical analysis methods, and the design 

of computational frameworks that can translate hierarchical 

data from thousands of individual cells into reproducible pa- 

tient-level readouts.

As other single-cell omic assays mature, the question will 

increasingly arise as to which is best suited for a particular clin-

ical context. Although we have focused on single-cell transcrip- 

tomics for technical reasons, it is unlikely that any particular 

assay will be optimal in all contexts. Instead, the selection of a 

specific assay to enable the development of coordinated multi- 

cellular biomarkers should reflect the biochemical and patho- 

physiological mechanisms underlying biomarker development. 

For instance, when durable responses to anticancer therapies 

are limited by the persistence of a small number of resistant cells 

characterized by a specific genomic alteration, sequencing of 

genomic DNA may provide a more sound basis for prognostica- 

tion than transcriptomic assays.

The advent of spatial omic assays presents new and more 

conceptually divergent opportunities with respect to clinical 

translation. 96 Such assays are most likely to be integrated into 

the practice of pathology, wherein morphological and molecular 

alterations within individual cells have long been appreciated 

within their cytoarchitectural context. AI-guided workflows for 

digital pathology based on conventional histological stains 

have been approved by regulatory bodies, 97,98 but the incorpo- 

ration of spatial omics data to derive clinically actionable read- 

outs is more nascent. Consequently, it remains to be seen to 

what extent and in which contexts the incorporation of spatial 

coordinates of gene expression and cells can specifically 

augment clinical decision-making, as compared to single-cell 

assays that profile dissociated cells.

A ROAD MAP TO THE CLINIC

The maturation of single-cell technologies now opens the possi- 

bility to move beyond descriptive analysis and toward the inte- 

gration of single-cell omics into medical and surgical practice 

(Figure 3). Past experience suggests that the most immediate 

mechanism by which these technologies will inform clinical deci- 

sion-making will be through the introduction of new biomarkers 

that achieve the vision of precision medicine by improving diag- 

nosis, facilitating treatment selection, monitoring therapeutic ef- 

ficacy, and prognosticating disease progression. Realizing this 

potential will require profiling large and carefully ascertained pa- 

tient cohorts and analyzing the resulting data with valid statistical 

methods, in order to discover robust biomarkers. Once bio- 

markers have been identified, experimental and computational 

SOPs will have to be developed in order to empower laboratories 

in any hospital environment to translate single-cell omics data 

into reproducible clinical readouts. Surmounting this challenge 

will require new computational infrastructure that automates 

subjective and manual aspects of single-cell data analysis. 

Because not all diseases or clinical decisions stand to benefit 

from single-cell biomarkers, this level of effort is best invested 

in diseases where single-cell omics can have the greatest impact 

on patient care. Condensing multifaceted single-cell datasets 

into actionable clinical readouts will require computational 

protocols that are tailored to the clinical context and careful 

consideration of methodological points that have received

Figure 3. A road map toward the integration of single-cell omics into medical and surgical practice

Summary of the key experimental, computational, and conceptual barriers for the clinical deployment of single-cell omics, and the solutions proposed in this 
manuscript.
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relatively little attention to date, particularly with respect to the 

use of machine learning to assign patient-level phenotypes. 

Overcoming all of these barriers will require close collaboration 

between clinicians, computational scientists, and the biotechno- 

logical industry in order for single-cell omics to impact routine 

clinical practice.
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72. Bü ttner, M., Ostner, J., Mü ller, C.L., Theis, F.J., and Schubert, B. (2021). 

scCODA is a Bayesian model for compositional single-cell data analysis. 

Nat. Commun. 12, 6876. https://doi.org/10.1038/s41467-021-27150-6.

73. Lee, H., and Han, B. (2024). Pseudobulk with proper offsets has the same 

statistical properties as generalized linear mixed models in single-cell 

case-control studies. Bioinformatics 40, btae498. https://doi.org/10. 

1093/bioinformatics/btae498.

74. Crowell, H.L., Soneson, C., Germain, P.-L., Calini, D., Collin, L., Raposo, 

C., Malhotra, D., and Robinson, M.D. (2020). muscat detects subpopula- 

tion-specific state transitions from multi-sample multi-condition single- 

cell transcriptomics data. Nat. Commun. 11, 6077. https://doi.org/10. 

1038/s41467-020-19894-4.

75. Simmons, S. (2022). Cell Type Composition Analysis: Comparison of sta- 

tistical methods. Preprint at bioRxiv. https://doi.org/10.1101/2022.02.04. 

479123.

76. He, B., Thomson, M., Subramaniam, M., Perez, R., Ye, C.J., and Zou, J. 

(2022). CloudPred: Predicting Patient Phenotypes From Single-cell RNA- 

seq. Pac. Symp. Biocomput. 27, 337–348.

77. Mao, Y., Lin, Y.-Y., Wong, N.K.Y., Volik, S., Sar, F., Collins, C., and Ester, 

M. (2024). Phenotype prediction from single-cell RNA-seq data using 

attention-based neural networks. Bioinformatics 40, btae067. https:// 

doi.org/10.1093/bioinformatics/btae067.

78. Litinetskaya, A., Shulman, M., Hediyeh-Zadeh, S., Moinfar, A.A., Curion, 

F., Szałata, A., Omidi, A., Lotfollahi, M., and Theis, F.J. (2024). Multimodal 

weakly supervised learning to identify disease-specific changes in sin- 

gle-cell atlases. Preprint at bioRxiv. https://doi.org/10.1101/2024.07. 

29.605625.

79. Xiong, G., Bekiranov, S., and Zhang, A. (2023). ProtoCell4P: an explain- 

able prototype-based neural network for patient classification using sin- 

gle-cell RNA-seq. Bioinformatics 39, btad493. https://doi.org/10.1093/ 

bioinformatics/btad493.

80. Heumos, L., Schaar, A.C., Lance, C., Litinetskaya, A., Drost, F., Zappia, 
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